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1 Summary 

According to a 2013 Pew Internet Project study of 2076 people [1], 91% of American adults own 
a cellphone. Increasingly, people are using their phones to access and store sensitive data. The 
same study found that 81% of cellphone owners use their mobile device for texting, 52% use it 
for email, 49% use it for maps (enabling location services), and 29% use it for online banking. 
And yet, securing the data is often not taken seriously because of an inaccurate estimation of risk 
as discussed in [2]. In particular, several studies have shown that a large percentage of 
smartphone owners do not lock their phone: 57% in [3], 33% in [4], 39% in [2], and 48% in this 
study. 

Active authentication is an approach of monitoring the behavioral biometric characteristics of a 
user’s interaction with the device for the purpose of securing the phone when the point-of-entry 
locking mechanism fails or is absent. In recent years, continuous authentication has been 
explored extensively on desktop computers, based either on a single biometric modality like 
mouse movement [5] or a fusion of multiple modalities like keyboard dynamics, mouse 
movement, web browsing, and stylometry [6]. Unlike physical biometric devices like fingerprint 
scanners or iris scanners, these systems rely on computer interface hardware like the keyboard 
and mouse that are already commonly available with most computers. 

In this report, we consider the problem of active authentication on mobile devices, where the 
variety of available sensor data is much greater than on the desktop, but so is the variety of 
behavioral profiles, device form factors, and environments in which the device is used. We study 
four representative modalities of stylometry (text analysis), application usage patterns, web 
browsing behavior, and physical location of the device. In the remainder of the report these four 
modalities will be referred to as text, app, web, and location, respectively. We consider the 
trade-off between intruder detection time and detection error as measured by false accept rate 
(FAR) and false reject rate (FRR). The analysis is performed on a dataset collected by the 
authors of 200 subjects using their personal Android mobile device for a period of at least 30 
days. To the best of our knowledge, this dataset is the first of its kind studied in active 
authentication literature, due to its large size [7], the duration of tracked activity [8], and the 
absence of restrictions on usage patterns and on the form factor of the mobile device. The 
geographical colocation of the participants, in particular, makes the dataset a good representation 
of an environment such as a closed-world organization where the unauthorized user of a 
particular device will most likely come from inside the organization. 

We propose to use decision fusion in order to asynchronously integrate the four modalities and 
make serial authentication decisions. While we consider here a specific set of binary classifiers, 
the strength of our decision-level approach is that additional classifiers can be added without 
having to change the basic fusion rule. Moreover, it is easy to evaluate the marginal 
improvement of any added classifier to the overall performance of the system. We evaluate the 
multimodal continuous authentication system by characterizing the error rates of local classifier 
decisions, fused global decisions, and the contribution of each local classifier to the fused 
decision. The novel aspects of our work include the scope of the dataset, the particular portfolio 
of behavioral biometrics in the context of mobile devices, and the extent of temporal 
performance analysis. 
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The remainder of the report is structured as follows. In §2, we discuss the related work on 
multimodal biometric systems, active authentication on mobile devices, and each of the four 
behavioral biometrics considered in this report. In §3, we discuss the 200 subject dataset that we 
collected and analyzed. In §4, we discuss four biometric modalities, their associated classifiers, 
and the decision fusion architecture. In §5, we present the performance of each individual 
classifier, the performance of the fusion system, and the contribution of each individual classifier 
to the fused decisions. 

2 Introduction 

2.1 Multimodal Biometric Systems 

The window of time based on which an active authentication system is tasked with making a 
binary decision is relatively short and thus contains a highly variable set of biometric 
information. Depending on the task the user is engaged in, some of the biometric classifiers may 
provide more data than others. For example, as the user chats with a friend via SMS, the text-
based classifiers will be actively flooded with data, while the web browsing based classifiers may 
only get a few infrequent events. This motivates the recent work on multimodal authentication 
systems where the decisions of multiple classifiers are fused together [9]. In this way, the 
verification process is more robust to the dynamic nature of human-computer interaction. The 
current approaches to the fusion of classifiers center around max, min, median, or majority vote 
combinations [10]. When neural networks are used as classifiers, an ensemble of classifiers is 
constructed and fused based on different initialization of the neural network [11]. 

Several active authentication studies have utilized multimodal biometric systems but have all, to 
the best of our knowledge: (1) considered a smaller pool of subjects, (2) have not characterized 
the temporal performance of intruder detection, and (3) have shown overall significantly worse 
performance than that achieved in our study. 

Our approach in this report is to apply the Chair-Varshney optimal fusion rule [12] for the 
combination of available multimodal decisions. The strength of the decision-level fusion 
approach is that an arbitrary number of classifiers can be added without re-training the classifiers 
already in the system. This modular design allows for multiple groups to contribute drastically 
different classification schemes, each lowering the error rate of the global decision. 

2.2 Mobile Active Authentication 

With the rise of smartphone usage, active authentication on mobile devices has begun to be 
studied in the last few years. The large number of available sensors makes for a rich feature 
space to explore. Ultimately, the question is the one that we ask in this report: what modality 
contributes the most to a decision fusion system toward the goal of fast, accurate verification of 
identity? Most of the studies focus on a single modality. For example, gait pattern was 
considered in [7] achieving an EER of 0.201 (20.1%) for 51 subjects during two short sessions, 
where each subject was tasked with walking down a hallway. Some studies have incorporated 
multiple modalities. For example, keystroke dynamics, stylometry, and behavioral profiling were 
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considered in [13] achieving an EER of 0.033 (3.3%) from 30 simulated users. The data for these 
users was pieced together from different datasets. To the best of our knowledge, the dataset that 
we collected and analyzed is unique in all its key aspects: its size (200 subjects), its duration 
(30+ days), and the size of the portfolio of modalities that were all tracked concurrently with a 
synchronized timestamp. 

2.3 Stylometry, Web Browsing, Application Usage, Location 

Stylometry is the study of linguistic style. It has been extensively applied to the problems of 
authorship attribution, identification, and verification. See [14] for a thorough summary of 
stylometric studies in each of these three problem domains along with their study parameters and 
the resulting accuracy. These studies traditionally use large sets of features (see Table II in [15]) 
in combination with support vector machines (SVMs) that have proven to be effective in high 
dimensional feature space [16], even in cases when the number of features exceeds the number 
of samples. Nevertheless, with these approaches, often more than 500 words are required in order 
to achieve adequately low error rates [17]. This makes them impractical for the application of 
real-time active authentication on mobile devices where text data comes in short bursts. 

While the other three modalities are not well investigated in the context of active authentication, 
this is not true for stylometry. Therefore, for this modality, we don’t reinvent the wheel, and 
implement the n-gram analysis approach presented in [14] that has been shown to work 
sufficiently well on short blocks of texts. 

Web browsing, application usage, and location have not been studied extensively in the context 
of active authentication. The following is a discussion of the few studies that we are aware of. 
Web browsing behavior has been studied for the purpose of understanding user behavior, habits, 
and interests [18]. Web browsing as a source for behavioral biometric data was considered in 
[19] to achieve average identification FAR/FRR of 0.24 (24%) on a dataset of 14 desktop 
computer users. Application usage was considered in [8], where cellphone data (from 2004) from 
the MIT Reality Mining project [20] was used to achieve 0.1 (10%) EER based on a portfolio of 
metrics including application usage, call patterns, and location. Application usage and 
movements patterns have been studied as part of behavioral profiling in cellular networks 
[8,21,22]. However, these approaches use position data of lower resolution in time and space 
than that provided by GPS on smartphones. To the best of our knowledge, GPS traces have not 
been utilized in literature for continuous authentication. 

3 Methods 

The dataset used in this work contains behavioral biometrics data for 200 subjects. The collection 
of the data was carried out by the authors over a period of 5 months. The requirements of the 
study were that each subject was a student or employee of Drexel University and was an owner 
and an active user of an Android smartphone or tablet. The number of subjects with each major 
Android version and associated API level are listed in Table 1. Nexus 5 was the most popular 
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device with 10 subjects using it. Samsung Galaxy S5 was the second most popular device with 6 
subjects using it. 

Table 1: The Android version and API level of the 200 devices that were part of the study. 

Android 
Version 

API 
Level 

Subjects 

4.4 19 143 
4.1 16 16 
4.3 18 15 
4.2 17 9 
4.0.4 15 5 
2.3.6 10 4 
4.0.3 15 3 
2.3.5 10 3 
2.2 8 2 

A tracking application was installed on each subject’s device and operated for a period of at least 
30 days until the subject came in to approve the collected data and get the tracking application 
uninstalled from their device. The following data modalities were tracked with 1-second 
resolution: 

• Text typed via soft keyboard.

• Apps visited.

• Websites visited.

• Location (based on GPS or WiFi).

The key characteristics of this dataset are its large size (200 users), the duration of tracked 
activity (30+ days), and the geographical colocation of its participants in the Philadelphia area. 
Moreover, we did not place any restrictions on usage patterns, on the type of Android device, and 
on the Android OS version (see Table 1). 
There were several challenges encountered in the collection of the data. The biggest problem was 
battery drain. Due to the long duration of the study, we could not enable modalities whose 
tracking proved to be significantly draining of battery power. These modalities include front-
facing video for eye tracking and face recognition, gyroscope, accelerometer, and touch gestures. 
Moreover, we had to reduce GPS sampling frequency to once per minute on most of the devices. 
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Table 2: The number of events in the dataset associated with each of the four modalities 
considered in this report.  

Event Frequency 
Text 23,254,478 
App 927,433 
Web 210,322 
Location 143,875 

A text event refers to a single character entered on the soft keyboard. An app events refers to a 
new app receiving focus. A web event refers to a new url entered in the url box. A location event 
refers to a new sample of the device location either from GPS or WiFi. 

Table 2 shows statistics on each of the four investigated modalities in the corpus. The table 
contains data aggregated over all 200 users. The “frequency” here is a count of the number of 
instances of an action associated with that modality. As stated previously, the four modalities 
will be referred to as text, app, web, and “location.” For text, the action is a single keystroke on 
the soft keyboard. For app, the action is opening or bringing focus to a new app. For web, the 
action is visiting a new website. For location, no explicitly action is taken by the user. Rather, 
location is sampled regularly at intervals of 1 minute when GPS is enabled. As Table 2 suggests, 
text events fire 1-2 orders of magnitude more frequently than the other three. 

The data for each user is processed to remove idle periods when the device is not active. The 
threshold for what is considered an idle period is 5 minutes. For example, if the time between 
event A and event B is 20 minutes, with no other events in between, this 20 minutes is 
compressed down to 5 minutes. The date and time of the event are not changed but the 
timestamp used in dividing the dataset for training and testing (see §5.1) is updated to reflect the 
new time between event A and event B. This compression of idle times is performed in order to 
regularize periods of activity for cross validation that utilizes time-based windows as described 
in §5.1. The resulting compressed timestamps are referred to as “active interaction”. Fig. 1 shows 
the duration (in hours) of active interaction for each of the 200 users ordered from least to most 
active. 

Table 3 shows three top-20 lists: (1) the top-20 apps based on the amount of text that was typed 
inside each app, (2) the top-20 apps based on the number of times they received focused, and (3) 
the top-20 website domains based on the number of times a website associated with that domain 
was visited. These are aggregate measures across the dataset intended to provide an intuition 
about its structure and content, but the top-20 list is the same as that used for the the classifier 
model based on the web and app features in §4. 

Fig. 2 shows a heat map visualization of a selection from the dataset of GPS locations in the 
Philadelphia area. The subjects in the study resided in Philadelphia but traveled all over United 
States and the world. There are two key characteristics of the GPS location data. First, it is 
relatively unique to each individual even for people living in the same area of a city. Second, 
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outside of occasional travel, it does not vary significantly from day to day. Human beings are 
creatures of habit, and in as much as location is a measure of habit, this idea is confirmed by the 
location data of the majority of the subjects in the study. 

Table 3: Top 20 apps ordered by text entry and visit frequency and top 20 websites ordered by 
visit frequency. These tables are provided to give insight into the structure and content of the 

dataset. 

App Name Keys Per 
App 

com.android.sms 5,617,297 
com.android.mms 5,552,079 
com.whatsapp 4,055,622 
com.facebook.orca 1,252,456 
com.google.android.talk 1,147,295 
com.infraware.polarisviewer4 990,319 
com.android.chrome 417,165 
com.facebook.katana 405,267 
com.snapchat.android 377,840 
com.google.android.gm 271,570 
com.htc.sense.mms 238,300 
com.tencent.mm 221,461 
com.motorola.messaging 203,649 
com.android.calculator2 167,435 
com.verizon.messaging.vzmsgs 137,339 
com.groupme.android 134,896 
com.handcent.nextsms 123,065 
com.jb.gosms 118,316 
com.sonyericsson.conversations 114,219 
com.twitter.android 92,605 

App Name Visits 
TouchWiz 
home 

101,151 

WhatsApp 64,038 
Messaging 60,015 
Launcher 39,113 
Facebook 38,591 
Google 
Search 

32,947 

Chrome 32,032 
Snapchat 23,481 
System UI 22,772 
Phone 19,396 
Gmail 19,329 
Messages 19,154 
Contacts 18,668 
Hangouts 17,209 
Home 16,775 
HTC Sense 16,325 
YouTube 14,552 
Xperia Home 13,639 
Instagram 13,146 
Settings 12,675 

(a) (b)

Website Domain Visits 
www.google.com 19,004 
m.facebook.com 9,300 
www.reddit.com 4,348 
forums.huaren.us 3,093 
learn.dcollege.net 2,133 
en.m.wikipedia.org 1,825 
mail.drexel.edu 1,520 
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one.drexel.edu 1,472 
login.drexel.edu 1,462 
likes.com 1,361 
mail.google.com 1,292 
i.imgur.com 1,132 
www.amazon.com 1,079 
netcontrol.irt.drexel.edu 1,049 
www.facebook.com 903 
banner.drexel.edu 902 
m.hupu.com 824 
t.co 801 
duapp2.drexel.edu 786 
m.ign.com 725 

(c) 

200 Users (Ordered from Least to Most Active) 

Figure 1: The duration of time (in hours) that each of the 200 users actively interacted with their 
device.. 
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4 Assumptions and Procedures 

4.1 Features and Classifiers 

The four distinct biometric modalities considered in our analysis are (1) text entered via soft 
keyboard, (2) applications used, (3) websites visited, and (4) physical location of the device as 
determined from GPS (when outdoors) or WiFi (when indoors). We refer to these four modalities 
as text, app, web, and location, respectively. In this section we discuss the features that were 
extracted from the raw data of each modality, and the classifiers that were used to map these 
features into binary decision space. 

A binary classifier is constructed for each of the 200 users and 4 modalities. In total, there are 
800 classifiers, each producing either a probability that a user is valid P(H1) (or a binary decision 
of 0 (invalid) or 1 (valid). The first class (H1) for each classifier is trained on the valid user’s data 
and the second class (H0) is trained on the other 199 users’ data. The training process is 
described in more detail in §5.1. For app, web, and location, the classifier takes a single instance 
of the event and produces a probability. For multiple events of the same modality, the set of 
probabilities is fused across time using maximum likelihood: 

H∗ = argmax Y P(xt|Hi), (1) 
i∈{0,1} xt∈Ω

where Ω = {xt|Tcurrent − T(xt) ≤ ω}, ω is a fixed window size in seconds, T(xt) is the timestamp of 
event xt, and Tcurrent is the current timestamp. The process of fusing classifier scores across time 
is illustrated in Fig. 3. 
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Figure 2: An aggregate heatmap showing a selection from the dataset of GPS locations in the 
Philadelphia area. 

4.1.1 Text 

As Table 3a indicates, the apps into which text was entered on mobile devices varied, but the 
activity in majority of the cases was communication via SMS, MMS, WhatsApp, Facebook, 
Google Hangouts, and other chat apps. Therefore, text events fired in short bursts. The tracking 
application captured the keys that were touched on the keyboard and not the autocorrected result. 
Therefore, the majority of the typed messages had a lot of misspellings and words that were 
erased in the final submitted message. In the case of SMS, we also were able to record the 
submitted result. For example, an SMS text that was submitted as “Sorry couldn’t call back.” had 
associated with it the following recorded keystrokes: “Sprry coyld cpuldn’t vsll back.” 
Classification based on the actual typed keys in principle is a better representation of the person’s 
linguistic style. It captures unique typing idiosyncrasies that autocorrect can conceal. As 
discussed in §2, we implemented a one-feature n-gram classifier from [14] that has been shown 
to work well on short messages. It works by analyzing the presence or absence of n-grams with 
respect to the training set. 
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4.1.2 App and Web 

The app and web classifier models we construct are identical in their structure. For the app 
modality we use the app name as the unique identifier and count the number of times a user visits 
each app in the training set. For the web modality we use the domain of the URL as the unique 
identifier and count the number of times a user visits each domain in the training set. Note that, 
for example, “m.facebook.com” is a considered a different domain than “www.facebook.com” 
because the subdomain is different. In this section we refer to the app name and the web domain 
as an “entity”. Table 3b and Table 3c show the top entities aggregated across all 200 users for 
app and web respectively. 

For each user, the classification model for the valid class is constructed by determining the top 
20 entities visited by that user in the training set. The quantity of visits is then normalized so that 
the 20 frequency values sum to 1. The classification model for the invalid class is constructed by 
counting the number of visit by the other 199 users to those same 20 domains, such that for each 
of those domains we now have a probability that a valid user visits it and an invalid user visits it. 
The evaluation for each user given the two empirical distributions is performed by the maximum 
likelihood product in (1). Entities that do not appear in the top 20 are considered outliers and are 
ignored in this classifier. 

4.1.3 Location 

Location is specified as a pair of values: latitude and longitude. Classification is performed using 
support vector machines (SVMs) [23] with the radial basis function (RBF) as the kernel function. 
The SVM produces a classification score for each pair of latitude and longitude. This score is 
calibrated to form a probability using Platt scaling [24] which requires an extra logistic 
regression on the SVM scores via an additional cross-validation on the training data. All of the 
code in this report is written by the authors except for the SVM classifier. Since the 
authentication system is written in C++, we used the Shark 3.0 machine learning library for the 
SVM implementation. 
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4.2 Decision Fusion 

Figure 3: The fusion architecture across time and across classifiers. The text, app, web, and 
location boxes indicate a firing of a single event associated with each of those modalities.  

Multiple classifier scores from the same modality are fused via (1) to produce a single local 
binary decision. Local binary decisions from each of the four modalities are fused via (4) to 
produce a single global binary decision. 

Decision fusion with distributed sensors is described by Tenney and Sandell in [25] who studied 
a parallel decision architecture. As described in [26], the system comprises of n local detectors, 
each making a decision about a binary hypothesis (H0,H1), and a decision fusion center (DFC) 
that uses these local decisions {u1,u2,...,un} for a global decision about the hypothesis. The ith

detector collects K observations before it makes its decision, ui. The decision is ui = 1 if the 
detector decides in favor of H1 and ui = −1 if it decides in favor of H0. The DFC collects the n 
decisions of the local detectors and uses them in order to decide in favor of H0(u = −1) or in 
favor of H1(u = 1). Tenney and Sandell [25] and Reibman and Nolte [27] studied the design of 
the local detectors and the DFC with respect to a Bayesian cost, assuming the observations are 
independent conditioned on the hypothesis. The ensuing formulation derived the local and DFC 
decision rules to be used by the system components for optimizing the system-wide cost. The 
resulting design requires the use of likelihood ratio tests by the decision makers (local detectors 
and DFC) in the system. However the thresholds used by these tests require the solution of a set 
of nonlinear coupled differential equations. In other words, the design of the local decision 
makers and the DFC are co-dependent. In most scenarios the resulting complexity renders the 
quest for an optimal design impractical. 

Chair and Varshney in [12] developed the optimal fusion rule when the local detectors are fixed 
and local observations are statistically independent conditioned on the hypothesis. Data Fusion 
Center is optimal given the performance characteristics of the local fixed decision makers. The 
result is a suboptimal (since local detectors are fixed) but computationally efficient and scalable 
design. In this study we use the ChairVarshney formulation. The parallel distributed fusion 
scheme (see Fig. 3) allows each classifier to observe an event, minimize the local risk and make 
a local decision over the set of hypothesis, based on only its own observations. Each classifier 
sends out a decision of the form: 

Time 

text 

Start of 
Activity 

text text text text text 

app app 

web web 

location location 

Classifiers 

Data 
Fusion 
Center 

C1 

C2 

C3 

C4 

{ − 1 , 1 } 

{ − 1 , 1 } 

{ − 1 , 1 } 

{ − 1 , 1 } 

{ − 1 , 1 } 
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(2) 

The fusion center combines these local decisions by minimizing the global Bayes’ risk. The 
optimum decision rule performs the following likelihood ratio test 

(3) 

where the a priori probabilities of the binary hypotheses H1 and H0 are P1 and P0 respectively. In 
this case the general fusion rule proposed in [12] is 

(4) 

with PiM,PiF representing the False Rejection Rate (FRR) and False Acceptance Rate (FAR) of 
the ith classifier respectively. The optimum weights minimizing the global probability of error are 
given by 

(5) 

(6) 

The threshold in (3) requires knowledge of the a priori probabilities of the hypotheses. In 
practice, these probabilities are not available, and the threshold τ is determined using different 
considerations such as fixing the probability of false alarm or false rejection as is done in §5.3. 

5 Results and Discussion 

5.1 Training, Characterization, Testing 

The data of each of the 200 users’ active interaction with the mobile device was divided into 5 
equal-size folds (each containing 20% time span of the full set). We performed training of each 
classifier on the first three folds (60%). We then tested their performance on the fourth fold. This 
phase is referred to as “characterization”, because its sole purpose is to form estimates of FAR 
and FRR for use by the fusion algorithm. We then tested the performance of the classifiers, 
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individually and as part of the fusion system, on the fifth fold. This phase is referred to as 
“testing” since this is the part that is used for evaluation the performance of the individual 
classifiers and the fusion system. The three phases of training, characterization, and testing as 
they relate to the data folds are shown in Fig. 4. 

• Training on folds 1, 2, 3.
Characterization on fold 4.
Testing on fold 5.

• Training on folds 2, 3, 4.
Characterization on fold 5.
Testing on fold 1.

• Training on folds 3, 4, 5.
Characterization on fold 1.
Testing on fold 2.

• Training on folds 4, 5, 1.
Characterization on fold 2.
Testing on fold 3.

• Training on folds 5, 1, 2.
Characterization on fold 3.
Testing on fold 4.

Figure 4: The three phases of processing the data to determine the individual performance of 
each classifiers and the performance of the fusion system that combines some subset of these 

classifiers. 
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The common evaluation method used with each classifier for data fusion was measuring the 
averaged error rates across five experiments; In each experiment, data of 3 folds was taken for 
training, 1 fold for characterization, and 1 for testing. The FAR and FRR computed during 
characterization were taken as input for the fusion system as a measurement of the expected 
performance of the classifiers. Therefore each experiment consisted of three phases: 1) train the 
classifier(s) using the training set, 2) determine FAR and FRR based on the training set, and 3) 
classify the windows in the test set. 

5.2 Performance: Individual Classifiers 

The conflicting objectives of an active authentication system are of response-time and 
performance. The less the system waits before making an authentication decision, the higher the 
expected rate of error. As more behavioral biometric data trickles in, the system can, on average, 
make a classification decision with greater certainty. 

This pattern of decreased error rates with an increased decision window can be observed in Fig. 5 
that shows (for 10 different time windows) the FAR and FRR of the 4 classifiers averaged over 
the 200 users with the error bars indicating the standard deviation. The “testing fold” (see §5.1) 
is used for computing these error rates. The “characterization fold” does not affect these results, 
but is used only for FAR/FRR estimation required by the decision fusion center in §5.3. 

The “time before decision” is the time between the first event indicating activity and the first 
decision produced by the fusion system. This metric can be thought of as “decision window 
size”. Events older than the time range covered by the time-window are disregarded in the 
classification. If no event associated with the modality under consideration fires in a specific 
time window, no error is added to the average. 

Table 4: The rates at which an event associated with each modality “fires” per hour. On average, 
GPS location is provided only 3.5 times an hour. 

Event Firing Rate (per 
hour) 

Text 557.8 
App 23.2 
Web 5.6 
Location 3.5 

There are two notable observations about the FAR/FRR plots in Fig. 5. First, the location 
modality provides the lowest error rates even though on average across the dataset it fires only 
3.5 times an hour as shown in Table 4. This means that classification on a single GPS coordinate 
is sufficient to correctly verify the user with an FAR of under 0.1 and an FRR of under 0.05. 
Second, the text modality converges to an FAR of 0.16 and an FRR of 0.11 after 30 minutes 
which is one of the worse performers of the four modalities, even though it fires 557.8 times an 
hour on average. At the 30 minute mark, that firing rate equates to an average text block size of 
279 characters. An FAR/FRR of 0.16/0.11 with 279 characters blocks improves on the error rates 
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achieved in [14] with 500 character blocks which in turn improved on the errors rates achieved in 
prior work for blocks of small text (see [14] for a full reference list on short-text stylometric 
analysis). 

In addition to the main four features under consideration in this report, we evaluated the 
contribution of eye tracking and an alternate stylometry feature-set. The EER of the eye tracking 
metric was 0.12 and the EER of the alternate stylometry metric was 0.26. 

5.3 Performance: Decision Fusion 

The events associated with each of the 4 modalities fire at very different rates as shown in Table 
4. Moreover, text events fire in bursts, while the location events fire at regularly spaced intervals
when GPS signal is available. The app and web events fire at varying degrees of burstiness 
depending on the user. Fig. 6 shows the distribution of the number of events that fire within each 
of the time windows. An important takeaway from these distributions is that most events come in 
bursts followed by periods of inactivity. This results in the counterintuitive fact that the 1 minute, 
10 minute, and 30 minute windows have a similar distribution on the number of events that fire 
within them. This is why the decrease in error rates attained from waiting longer for a decision is 
not as significant as might be expected. 

Asynchronous fusion of classification of events from each of the four modalities is robust to the 
irregular rates at which events fire. The decision fusion rule in (4) utilizes all the available 
biometric data, weighing each classifier according to its prior performance. Fig. 7 shows the 
receiver operating characteristic (ROC) curve trading off between FAR and FRR by varying the 
threshold parameter τ in (3). 

As the size of the decision window increases, the performance of the fusion system improves, 
dropping from an equal error rate (EER) of 0.05 using the 1 minute window to below 0.01 EER 
using the 30 minute window. 

5.4 Contribution of Local Classifiers to Global Decision 

The performance of the fusion system that utilizes all four modalities of text, app, web, and 
location is described in the previous section. Besides this, we are able to use the fusion system to 
characterize the contribution of each of the local classifiers to the global decision. This is the 
central question we consider in the report: what biometric modality is most helpful in verifying a 
person’s identity under a constraint of a specific time window before the verification decision 
must be made? We measure the contribution Ci of each of the four classifiers by evaluating the 
performance of the system with and without the classifier, and computing the contribution by: 

(7) 

where E is the error rate computed by averaging FAR and FRR of the fusion system using the 
full portfolio of 4 classifiers, Ei is the error rate of the fusion system using all but the i-th 
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classifier, and Ci is the relative contribution of the i-th classifier as shown in Fig. 8. We consider 
the contribution of each classifier under three time windows of 1 minute, 10 minutes, and 30 
minutes. Location contributes the most in all three cases, with the second biggest contributor 
being web browsing. Text contributes the least for the small window of 1 minute, but improve 
for the large windows. App usage is the least predictable contributor. 
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Figure 5: FAR and FRR performance of the individual classifiers associated with each of the 
four modalities. 

Each bar represent the average error rate for a given module and time window. Each of the 200 
users has 2 classifiers for each modality, so each bar provides a value that was averaged over 200 
individual error rates. The error bar indicate the standard deviation across these 200 values. 
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Number of Events Fired in Time Window 

Figure 6: The distribution of the number of events that fire within a given time window. 

This is a long tail distribution as non-zero probabilities of event frequencies above 13 extend to 
over 100. These outliers are excluded from this histogram plot in order to highlight the high-
probability frequencies. Time windows in which no events fire are not included in this plot. 
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False Reject Rate (FRR)
Figure 7: The performance of the fusion system with 4 classifiers on the 200 subject dataset.  

The ROC curve shows the tradeoff between FAR and FRR achieved by varying the threshold 
parameter a0 in (4). 
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Time Before Decision (mins)
Figure 8: Relative contribution of each of the 4 classifiers computed according to (7). 
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6 Conclusions 

In this work, we proposed a parallel binary decision-level fusion architecture for classifiers based 
on four biometric modalities: text, application usage, web browsing, and location. Using this 
fusion method we addressed the problem of active authentication and characterized its 
performance on a real-world dataset of 200 subjects, each using their personal Android mobile 
device for a period of at least 30 days. The authentication system achieved an equal error rate 
(ERR) of 0.05 (5%) after 1 minute of user interaction with the device, and an EER of 0.01 (1%) 
after 30 minutes. We showed the performance of each individual classifier and its contribution to 
the fused global decision. The location-based classifier, while having the lowest firing rate, 
contributes the most to the performance of the fusion system. 

7 Disclaimer 

This research was developed with funding from the Defense Advanced Research Projects 
Agency (DARPA). The views, opinions, and/or findings contained in this article are those of the 
authors and should not be interpreted as representing the official views or policies of the 
Department of Defense or the U.S. Government. 
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List of Acronyms 

DFC Decision Fusion Center 

EER Equal Error Rate 

FAR False Accept Rate 

FRR False Reject Rate 
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